This paper deals with the rate of convergence for the central limit theorem of estimators of the drift coefficient, denoted θ, for the Ornstein-Uhlenbeck process $X := \{X_{t},t\geq 0\}$
X
:
=
{
X
t
,
t
≥
0
}
observed at high frequency. We provide an approximate minimum contrast estimator and an approximate maximum likelihood estimator of θ, namely $\widetilde{\theta}_{n}:= {1}/{ (\frac{2}{n} \sum_{i=1}^{n}X_{t_{i}}^{2} )}$
θ
˜
n
:
=
1
/
(
2
n
∑
i
=
1
n
X
t
i
2
)
, and $\widehat{\theta}_{n}:= -{\sum_{i=1}^{n} X_{t_{i-1}} (X_{t_{i}}-X_{t_{i-1}} )}/{ (\Delta _{n} \sum_{i=1}^{n} X_{t_{i-1}}^{2} )}$
θ
ˆ
n
:
=
−
∑
i
=
1
n
X
t
i
−
1
(
X
t
i
−
X
t
i
−
1
)
/
(
Δ
n
∑
i
=
1
n
X
t
i
−
1
2
)
, respectively, where $t_{i} = i \Delta _{n}$
t
i
=
i
Δ
n
, $i=0,1,\ldots , n $
i
=
0
,
1
,
…
,
n
, $\Delta _{n}\rightarrow 0$
Δ
n
→
0
. We provide Wasserstein bounds in the central limit theorem for $\widetilde{\theta}_{n}$
θ
˜
n
and $\widehat{\theta}_{n}$
θ
ˆ
n
.