Abstract. How, in a discretized model, to utilize the duality and complementarity of two saddle point variational principles is considered in the paper. A homology family of optimality conditions, different from the conventional saddle point conditions of the domain-decomposed Hellinger-Reissner principle, is derived to enhance stability of hybrid finite element schemes. Based on this, a stabilized hybrid method is presented by associating element-interior displacement with an element-boundary one in a nonconforming manner. In addition, energy compatibility of strain-enriched displacements with respect to stress terms is introduced to circumvent Poisson-locking.