2015
DOI: 10.1145/2768577.2768641
|View full text |Cite
|
Sign up to set email alerts
|

Rational invariants of finite abelian groups

Abstract: We investigate the field of rational invariants of the linear action of a finite abelian group in the non modular case. By diagonalization, the group is accurately described by an integer matrix of exponents. We make use of linear algebra to compute a minimal generating set of invariants and the substitution to rewrite any invariant in terms of this generating set. We show that the generating set can be chosen to consist of polynomial invariants. As an application, we provide a symmetry reduction scheme for po… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 18 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?