2011
DOI: 10.48550/arxiv.1104.4641
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Rational points on X_0^+ (p^r)

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

1
1
0
1

Year Published

2012
2012
2012
2012

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(3 citation statements)
references
References 0 publications
1
1
0
1
Order By: Relevance
“…For an element h ∈ H of order n, Proposition 2 implies that s = 2 + (ℓ − 1)/n is an integer, thus n divides ℓ − 1 and in fact divides (ℓ − 1)/2. This completes the proof of (1).…”
Section: Proof Of Theoremsupporting
confidence: 62%
See 1 more Smart Citation
“…For an element h ∈ H of order n, Proposition 2 implies that s = 2 + (ℓ − 1)/n is an integer, thus n divides ℓ − 1 and in fact divides (ℓ − 1)/2. This completes the proof of (1).…”
Section: Proof Of Theoremsupporting
confidence: 62%
“…By Theorem 1.1 of [12], for all ℓ > 7 congruent to 3 mod 4, the only rational non-cuspidal points on X + 0 (ℓ 2 )(Q) correspond to elliptic curves with CM. 1 But we have shown that no curve with CM can arise in an exceptional pair, and the theorem follows.…”
Section: Proof Of Theoremmentioning
confidence: 70%
“…Le théorème de Mazur constitue, pour le corps Q, une partie de la réponse au ≪ problème de Serre uniforme ≫ (voir la partie 4.3 de [Ser72]) qui consiste à déterminer s'il existe une borne B K vérifiant : pour toute courbe elliptique E définie sur K et sans multiplication complexe sur Q et tout nombre premier p strictement supérieur à B K , la représentation ϕ E,p est surjective. On pourra à ce sujet consulter les travaux récents de Bilu, Parent et Rebolledo (voir [BPR11]).…”
Section: Introductionunclassified