Over the past decades, many existing drugs and clinical/preclinical compounds have been repositioned as new therapeutic indication from which they were originally intended and to treat off-target diseases by targeting their noncognate protein receptors, such as Sildenafil and Paxlovid, termed drug repurposing (DRP). Despite its significant attraction in the current medicinal community, the DRP is usually considered as a matter of accidents that cannot be fulfilled reliably by traditional drug discovery protocol. In this study, we proposed an integrated computational/experimental (iC/E) strategy to facilitate the DRP within a framework of rational drug design, which was practiced on the identification of new neuronal nitric oxide synthase (nNOS) inhibitors from a structurally diverse, functionally distinct drug pool. We demonstrated that the iC/E strategy is very efficient and readily feasible, which confirmed that the phosphodiesterase inhibitor DB06237 showed a high inhibitory potency against nNOS synthase domain, while other two general drugs, i.e. DB02302 and DB08258, can also inhibit the synthase at nanomolar level. Structural bioinformatics analysis revealed diverse noncovalent interactions such as hydrogen bonds, hydrophobic forces and van der Waals contacts across the complex interface of nNOS active site with these identified drugs, conferring both stability and specificity for the complex recognition and association.