Simultaneous labeling of the drug compartment and shell of delivery vehicles with optical and positron emission tomography (PET) probes is developed and employed to inform a physiologically-based pharmacokinetic model. Based on time-dependent estimates of the concentration of these tracers within the blood pool, reticulo-endothelial system (RES) and tumor interstitium, we compare the stability and circulation of long-circulating and temperature-sensitive liposomes. We find that rates of transport to the RES for long-circulating and temperature-sensitive particles are 0.046 and 0.19 hr−1, respectively. Without the application of exogenous heat, the rates of release from the long-circulating and temperature-sensitive particles circulating within the blood pool are 0.003 and 0.2 hr−1, respectively. Prolonged life-time in circulation and slow drug release from liposomes result in a significantly greater drug area under the curve for the long-circulating particles. Future studies will couple these intrinsic parameters with exogenous heat-based release. Finally, we develop a transport constant for the transport of liposomes from the blood pool to the tumor interstitium, which is on the order of 0.01 hr−1 for the Met-1 tumor system.