The carbon-bonded gas-phase Meisenheimer complex of 2,4,6-trinitrotoluene (TNT) and the nitromethyl carbanion CH 2 NO 2 Ϫ (m/z 60) is generated for the first time by chemical ionization using nitromethane as the reagent gas. Collision-induced dissociation (CID) of the Meisenheimer complex furnishes deprotonated TNT, a result of the higher gas-phase acidity of TNT than nitromethane. The formation of Meisenheimer complexes with CH 2 NO 2 Ϫ in the gas phase is selective to highly electron-deficient compounds such as dinitrobenzene and trinitrobenzene and does not occur with organic molecules with lower electron-affinity such as methanol, methylamine, propionaldehyde, acetone, ethyl acetate, chloroform, toluene, m-methoxytoluene, and even nitrobenzene and p-fluoronitrobenzene. As such, the reaction allows selective detection of TNT in mixtures. Meisenheimer complexes between CH 2 NO 2 Ϫ and the three dinitrobenzene isomers display distinctive fragmentations. The oxygen-bonded -complex of TNT with the deprotonated hemiacetal anion CH 3 OCH 2 O Ϫ (m/z 61), represents a different type of Meisenheimer complex. It displays characteristic fragmentation involving loss of HNO 2 upon CID. The combination of a selective ion/molecule reaction (Meisenheimer complex formation) followed by a characteristic CID process provides a second novel and highly selective approach to the detection of TNT and closely related compounds in mixtures. The assay is readily implemented using neutral loss scans in a triple quadrupole mass spectrometer. Gas-phase reactions of denitrosylated TNT with benzaldehyde produce the corresponding dihydrofuran in an aldol condensation, a result that parallels the corresponding condensed-phase reaction. (J Am Soc Mass Spectrom 2004, 15, 998 -1004