In this paper, we study balanced metrics and Berezin quantization on a class of Hartogs domains defined by $$\varOmega _n=\{(z_1,\ldots ,z_n)\in {\mathbb {C}}^n:\vert z_1\vert<\vert z_2\vert<\cdots<\vert z_n\vert <1\}$$
Ω
n
=
{
(
z
1
,
…
,
z
n
)
∈
C
n
:
|
z
1
|
<
|
z
2
|
<
⋯
<
|
z
n
|
<
1
}
which generalize the so-called classical Hartogs triangle. We introduce a Kähler metric $$g(\nu )$$
g
(
ν
)
associated with the Kähler potential $$\varPhi _n(z):=-\sum _{k=1}^{n-1}\nu _k\ln (\vert z_{k+1}\vert ^2-\vert z_k\vert ^2)-\nu _n\ln (1-\vert z_n\vert ^2)$$
Φ
n
(
z
)
:
=
-
∑
k
=
1
n
-
1
ν
k
ln
(
|
z
k
+
1
|
2
-
|
z
k
|
2
)
-
ν
n
ln
(
1
-
|
z
n
|
2
)
on $$\varOmega _n$$
Ω
n
. As main contributions, on one hand we compute the explicit form for Bergman kernel of weighted Hilbert space, and then, we obtain the necessary and sufficient condition for the metric $$g(\nu )$$
g
(
ν
)
on the domain $$\varOmega _n$$
Ω
n
to be a balanced metric. On the other hand, by using the Calabi’s diastasis function, we prove that the Hartogs triangles admit a Berezin quantization.