Future mobile communications are expected to experience a technical revolution that goes beyond Gbps data rates and reduces data rate latencies to levels very close to a millisecond. New enabling technologies have been researched to achieve these demanding specifications. The utilization of mmWave bands, where a lot of spectrum is available, is one of them.Due to the numerous technical difficulties associated with using this frequency band, complicated channel models are necessary to anticipate the radio channel characteristics and to accurately evaluate the performance of cellular systems in mmWave. In particular, the most accurate propagation models are those based on deterministic ray tracing techniques. But these techniques have the stigma of being computationally intensive, and this makes it difficult to use them to characterize the radio channel in complex and dynamic indoor scenarios. The complexity of characterizing these scenarios depends largely on the interaction of the human body with the radio environment, which at mmWaves is often destructive and highly unpredictable.On the other hand, in recent years, the video game industry has developed powerful tools for hyper-realistic environments, where most of the progress in this reality emulation has to do with the handling of light. Therefore, the graphic engines of these platforms have become more and more efficient to handle large volumes of information, becoming ideal to emulate the radio wave propagation behavior, as well as to reconstruct a complex interior scenario. Therefore, in this Thesis one has taken advantage of the computational capacity of this type of tools to evaluate the mmWave radio channel in the most efficient way possible. This Thesis offers some guidelines to optimize the signal propagation in mmWaves in a dynamic and complex indoor environment, for which three main objectives are proposed.The first objective has been to evaluate the scattering effects of the human body when it interacts with the propagation channel. Once evaluated, a simplified mathematical and geometrical model has been proposed to calculate this effect in a reliable and fast way. Another objective has been the design of a modular passive reflector in mmWaves, which optimizes the coverage in indoor environments, avoiding human interference in the propagation, in order to avoid its harmful scattering effects. And finally, a real-time predictive beam steering system has been designed for the mmWaves radiation system, in order to avoid propagation losses caused by the human body in dynamic and complex indoor environments.