We present a tentative review of compressibility effects in Rayleigh-Taylor instabilityinduced flows. The linear, nonlinear and turbulent regimes are considered. We first make the classical distinction between the static compressibility or stratification, and the dynamic compressibility owing to the finite speed of sound. We then discuss the quasi-incompressible limits of the Navier-Stokes equations (i.e. the low-Mach number, anelastic and Boussinesq approximations). We also review some results about stratified compressible flows for which instability criteria have been derived rigorously. Two types of modes, convective and acoustic, are possible in these flows. Linear stability results for perfect fluids obtained from an analytical approach, as well as viscous fluid results obtained from numerical approaches, are also reviewed. In the turbulent regime, we introduce Chandrasekhar's observation that the largest structures in the density fluctuations are determined by the initial conditions. The effects of compressibility obtained by numerical simulations in both the nonlinear and turbulent regimes are discussed. The modifications made to statistical models of fully developed turbulence in order to account for compressibility effects are also treated briefly. We also point out the analogy with turbulent compressible Kelvin-Helmholtz mixing layers and we suggest some lines for further investigations.