This study investigates the reflection and transmission of plane SH-waves in two semi-infinite anisotropic magnetoelastic media. The lower halfspace is considered as initially stressed and inhomogeneous. The density of lower half-space is taken exponentially varying with depth. The solutions for halfspaces are obtained analytically. The expressions for reflection and transmission coefficient are obtained in the closed form subject to continuity conditions at the interfaces of anisotropic magnetoelastic half-spaces and the Snell's law. It is found that these coefficients depend on the initial stress, inhomogeneity parameter, the magnetoelastic coupling parameter, and the angle at which wave crosses the magnetic field of the halfspaces. Numerical computations are performed for these coefficients for a specific model of two different anisotropic magnetoelastic half-spaces. The numerical results are illustrated by the graph of reflection and transmission coefficient versus the angle of incidence. In general, as the initial stress increases the reflection and transmission coefficient increases, the affect is more prominent for more than 10 GPa. Inhomogeneity in the density of the material also increases the reflection and transmission coefficient. The anisotropic magnetoelastic parameter and the angle at which the wave crosses the magnetic field for both the half-spaces have a quite significant effect on the reflection and transmission coefficient.