Understanding the biologic role of N 6 -methyladenosine (m 6 A) RNA modifications in mRNA requires an understanding of when and where in the life of a pre-mRNA transcript the modifications are made. We found that HeLa cell chromatin-associated nascent pre-mRNA (CA-RNA) contains many unspliced introns and m 6 A in exons but very rarely in introns. The m 6 A methylation is essentially completed upon the release of mRNA into the nucleoplasm. Furthermore, the content and location of each m 6 A modification in steady-state cytoplasmic mRNA are largely indistinguishable from those in the newly synthesized CA-RNA or nucleoplasmic mRNA. This result suggests that quantitatively little methylation or demethylation occurs in cytoplasmic mRNA. In addition, only ∼10% of m 6 As in CA-RNA are within 50 nucleotides of 5 ′ or 3 ′ splice sites, and the vast majority of exons harboring m 6 A in wild-type mouse stem cells is spliced the same in cells lacking the major m 6 A methyltransferase Mettl3. Both HeLa and mouse embryonic stem cell mRNAs harboring m 6 As have shorter half-lives, and thousands of these mRNAs have increased half-lives (twofold or more) in Mettl3 knockout cells compared with wild type. In summary, m 6 A is added to exons before or soon after exon definition in nascent pre-mRNA, and while m 6 A is not required for most splicing, its addition in the nascent transcript is a determinant of cytoplasmic mRNA stability. Studying nascent RNA synthesis in cultured cells using very brief pulse labeling with radioactive nucleosides allowed a number of advances in understanding premRNA synthesis and processing in the era before rapid nucleic acid sequencing. Examples include polyA addition on pre-mRNA before completion of mRNA processing and cytoplasmic entry (Darnell et al. 1971;Edmonds et al. 1971) and locating the first known boundaries of eukaryotic polymerase II transcription units through studying labeled nascent adenovirus transcripts (Bachenheimer and Darnell 1975;Evans et al. 1977;Weber et al. 1977).These early experiments were joined by a cell fractionation technique originated by Wuarin and Schibler (1994) that uses a 1 M urea solution to liberate a "chromatin" fraction from nuclei. This fraction provides a stringent purification of growing nascent pre-mRNA chains, isolated as a chromatin-associated RNA fraction (referred to as CA-RNA), along with RNA polymerase II plus all nuclear DNA and associated histones. Using specific labeled DNA probes, Wuarin and Schibler (1994) demonstrated removal in liver cell nuclei of some, but not all, introns from two specific nascent pre-mRNAs: a transcription factor pre-mRNA involved in circadian rhythm and the HMG coA reductase pre-mRNA. Recently, Pandya-Jones and Black (2009) adapted this procedure to study the extent and order of intron removal in cultured human carcinoma cell nuclei, again showing that many, but not all, introns are removed in CA-RNA.