Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
<div class="section abstract"><div class="htmlview paragraph">The Coal-To-Liquid (CTL) synthetic aviation fuel, Iso-Paraffinic Kerosene (IPK), was studied for ignition delay, combustion delay, pressure trace, pressure rise rate, apparent heat release rate in an experimental single cylinder indirect injection (IDI) compression ignition engine and a constant volume combustion chamber (CVCC). Autoignition characteristics for neat IPK, neat Ultra-Low Sulfur Diesel (ULSD), and a blend of 50%IPK and 50% ULSD were determined in the CVCC and the effects of the autoignition quality of each fuel were determined also in an IDI engine. ULSD was found to have a Derived Cetane Number (DCN) of 47 for the batch used in this experimentation. IPK was found to have a DCN of 25.9 indicating that is has a lower affinity for autoignition, and the blend fell between the two at 37.5. Additionally, it was found that the ignition delay for IPK in the CVCC was 5.3 ms and ULSD was 3.56 ms. This increase in ignition delay allowed the accumulation of fuel in the combustion chamber when running with IPK that resulted in detonation of the premixed air and fuel found to cause high levels of Ringing Intensity (RI) when running neat IPK indicated by the 60% increase in Peak Pressure Rise Rate (PPRR) when compared to ULSD at the same load. An emissions analysis was conducted at 7 bar Indicated Mean Effective Pressure (IMEP) for ULSD and the blend of 50% ULSD and 50% IPK. With the addition of 50% IPK by mass, there was found to be a reduction in the NO<sub>x</sub>, CO<sub>2</sub>, with a slight increase in the CO in g/kWh.</div></div>
<div class="section abstract"><div class="htmlview paragraph">The Coal-To-Liquid (CTL) synthetic aviation fuel, Iso-Paraffinic Kerosene (IPK), was studied for ignition delay, combustion delay, pressure trace, pressure rise rate, apparent heat release rate in an experimental single cylinder indirect injection (IDI) compression ignition engine and a constant volume combustion chamber (CVCC). Autoignition characteristics for neat IPK, neat Ultra-Low Sulfur Diesel (ULSD), and a blend of 50%IPK and 50% ULSD were determined in the CVCC and the effects of the autoignition quality of each fuel were determined also in an IDI engine. ULSD was found to have a Derived Cetane Number (DCN) of 47 for the batch used in this experimentation. IPK was found to have a DCN of 25.9 indicating that is has a lower affinity for autoignition, and the blend fell between the two at 37.5. Additionally, it was found that the ignition delay for IPK in the CVCC was 5.3 ms and ULSD was 3.56 ms. This increase in ignition delay allowed the accumulation of fuel in the combustion chamber when running with IPK that resulted in detonation of the premixed air and fuel found to cause high levels of Ringing Intensity (RI) when running neat IPK indicated by the 60% increase in Peak Pressure Rise Rate (PPRR) when compared to ULSD at the same load. An emissions analysis was conducted at 7 bar Indicated Mean Effective Pressure (IMEP) for ULSD and the blend of 50% ULSD and 50% IPK. With the addition of 50% IPK by mass, there was found to be a reduction in the NO<sub>x</sub>, CO<sub>2</sub>, with a slight increase in the CO in g/kWh.</div></div>
<div class="section abstract"><div class="htmlview paragraph">An investigation of the performance and emissions of a Fischer-Tropsch Coal-to-Liquid (CTL) Iso-Paraffinic Kerosene (IPK) was conducted using a CRDI compression ignition research engine with ULSD as a reference. Due to the low Derived Cetane Number (DCN), of IPK, an extended Ignition Delay (ID), and Combustion Delay (CD) were found for it, through experimentation in a Constant Volume Combustion Chamber (CVCC). Neat IPK was analyzed in a research engine at 4 bar Indicated Mean Effective Pressure (IMEP) at three injection timings: 15°, 20°, and 25° BTDC. Combustion phasing (CA50) was matched with ULSD at 10.8° and 16° BTDC. The IPK DCN was found to be 26, while the ULSD DCN was significantly higher at 47 in a PAC CID 510. In the engine, IPK’s DCN combined with its short physical ignition delay and long chemical ignition delay compared to ULSD, caused extended duration in Low Temperature Heat Release (LTHR) and cool flame formation. It was found in an analysis of the Apparent Heat Release Rate (AHRR) curve for IPK that there were multiple Negative Temperature Coefficient (NTCR) regions before the main combustion event. The High Temperature Heat Release (HTHR) of IPK achieved a greater peak heat release rate compared to ULSD. Pressure rise rate for IPK was observed to increase significantly with increase in injection timing. The peak in-cylinder pressure was also greater for IPK when matching CA50 by varying injection timing. Emissions analysis revealed that IPK produced less NO<sub>x</sub>, soot, and CO<sub>2</sub> compared to ULSD. CO and UHC emissions for IPK increased.</div></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.