Transforming historical listed buildings into workplaces is a serious challenge, particularly for buildings with relatively small windows in the façades, which determine scarce daylighting indoors. This paper studied how daylighting can be significantly increased in a case-study historical building through rooflighting systems, as the façade cannot be modified. The case-study was a historic and iconic warehouse built-in 1681 in Trondheim, Norway. The optimized configuration was analyzed in terms of daylight amount and view analysis, according to EN 17037 and to LEED v4.1 protocol. A critical evaluation of the actual applicability of the optimized Scenario in the real building was carried out along with the constructors. A 3D model was built in Rhinoceros, and daylighting simulations of the base-case (the building in the existing configuration) and for 6 alternative Scenarios were run through Climate Studio. The following metrics were calculated: Daylight Factor (DF), Spatial Daylight Autonomy (sDA), Annual Sunlight Exposure (ASE), and views. An optimized configuration was eventually identified through the Galapagos component in Grasshopper, with an average DF value of 2.7% (against 0.9% in the base-case configuration), higher than the target DFm of 2.4% for Norway), and a sDA value of 50.2% (14.2% in base-case configuration).