Given their sheer cumulative biomass and ubiquitous presence, parasites are increasingly recognized as essential components of most food webs. Beyond their influence as consumers of host tissue, many parasites also have free-living infectious stages that may be ingested by non-host organisms, with implications for energy and nutrient transfer, as well as for pathogen transmission and infectious disease dynamics. This has been particularly well-documented for the cercaria free-living stage of digenean trematode parasites within the Phylum Platyhelminthes. Here, we aim to synthesize the current state of knowledge regarding cercariae consumption by examining: (a) approaches for studying cercariae consumption; (b) the range of consumers and trematode prey documented thus far; (c) factors influencing the likelihood of cercariae consumption; (d) consequences of cercariae consumption for individual predators (e.g. their viability as a food source); and (e) implications of cercariae consumption for entire communities and ecosystems (e.g. transmission, nutrient cycling and influences on other prey). We detected 121 unique consumer-by-cercaria combinations that spanned 60 species of consumer and 35 trematode species. Meaningful reductions in transmission were seen for 31 of 36 combinations that considered this; however, separate studies with the same cercaria and consumer sometimes showed different results. Along with addressing knowledge gaps and suggesting future research directions, we highlight how the conceptual and empirical approaches discussed here for consumption of cercariae are relevant for the infectious stages of other parasites and pathogens, illustrating the use of cercariae as a model system to help advance our knowledge regarding the general importance of parasite consumption.