Impellers are referred to as a core component of turbomachinery. The use of impellers in various applications is considered an integral part of the industry. So, increased performance and the optimization of impellers have been the center of attention of a lot of studies. In this regard, studies have been focused on the improvement of the efficiency of rotary machines through aerodynamic optimization, using high-performance materials and suitable manufacturing processes. As such, the use of polymers and polymer composites due to their lower weight when compared to metals has been the focus of studies. On the other hand, methods of the manufacturing process for polymer and polymer composite impellers such as conventional impeller manufacturing, injection molding and additive manufacturing can offer higher economic efficiency than similar metal parts. In this study, polymeric and polymer composites impellers are discussed and conclusions are drawn according to the manufacturing methods. Studies have shown promising results for the replacement of polymers and polymer composites instead of metals with respect to a suitable temperature range. In general, polymers showed a good ability to fabricate the impellers, however in more difficult working conditions considering the need for a substance with higher physical and mechanical properties necessitates the use of composite polymers. However, in some applications, the use of these materials needs further research and development.