NASA's SpitzerSpaceOps Conferences 2 observational capabilities remain either undiminished or improved, and the high overall science data collection efficiency remains nearly unchanged. In this contribution, we outline several operational changes, innovations, and optimizations that have both minimized the impact of the growing distance on data transmission and enhanced the precision of data acquired by the science instruments.Though faced with diminishing budgetary resources that reduced staffing and allowed fewer upgrades of aging equipment, extended mission operations can provide an opportunity to acquire extensive science at bargain prices. The spacecraft, ground, and mission operations systems and procedures to perform the extended mission are already in place from the prime mission. The key to maintaining successful extended operations is the proper automation, modification and process enhancement of extant prime mission capabilities and procedures to maximize science return with acceptable risk as opposed to the creation of new capabilities. Spitzer's successful optimization of existing operational capabilities and the associated lessons learned that have gone into maximizing the lifetime well into its second decade of operation will hopefully provide guidelines for future missions, as it continues to make important contributions to the field of astrophysics, including the recent, highly significant discovery and characterization of exoplanets in the TRAPPIST-1 system.