Summary:
Listeners with normal hearing and mild to moderate loss identified fricatives and affricates that were recorded through hearing aids with frequency transposition (FT) or nonlinear frequency compression (NFC). FT significantly degraded performance for both groups. When frequencies up to ~9 kHz were lowered with NFC and with a novel frequency compression algorithm, spectral envelope decimation, performance significantly improved relative to conventional amplification (NFC-off) and was equivalent to wideband speech. Significant differences between most conditions could be largely attributed to an increase or decrease in confusions for /s/ and /z/.
Objectives:
Stelmachowicz and colleagues have demonstrated that the limited bandwidth associated with conventional hearing aid amplification prevents useful high-frequency speech information from being transmitted. The purpose of this study was to examine the efficacy of two popular frequency-lowering algorithms and one novel algorithm (spectral envelope decimation) in adults with mild-to-moderate sensorineural hearing loss and in normal-hearing controls.
Design:
Participants listened monaurally through headphones to recordings of nine fricatives and affricates spoken by three women in a vowel-consonant (VC) context. Stimuli were mixed with speech-shaped noise at 10 dB SNR and recorded through a Widex Inteo IN-9 and a Phonak Naída UP V behind-the-ear (BTE) hearing aid. Frequency transposition (FT) is used in the Inteo and nonlinear frequency compression (NFC) used in the Naída. Both devices were programmed to lower frequencies above 4 kHz, but neither device could lower frequencies above 6-7 kHz.
Each device was tested under four conditions: frequency lowering deactivated (FT-off and NFC-off), frequency lowering activated (FT and NFC), wideband (WB), and a fourth condition unique to each hearing aid. The WB condition was constructed by mixing recordings from the first condition with high-pass filtered versions of the source stimuli. For the Inteo, the fourth condition consisted of recordings made with the same settings as the first, but with the noise reduction feature activated (FT-off). For the Naída, the fourth condition was the same as the first condition except that source stimuli were pre-processed by a novel frequency compression algorithm, spectral envelope decimation (SED), designed in MATLAB that allowed for a more complete lowering of the 4-10 kHz input band. A follow up experiment with NFC used Phonak’s Naída SP V BTE, which could also lower a greater range of input frequencies.
Results:
For normal-hearing (NH) and hearing-impaired (HI) listeners, performance with FT was significantly worse compared to the other conditions. Consistent with previous findings, performance for the HI listeners in the WB condition was significantly better than in the FT-off condition. In addition, performance in the SED and WB conditions were both significantly better than the NFC-off condition and the NFC condition with 6 kHz input bandwidth. There were no signifi...