The technology of water plugging and increasing production in high water cut reservoirs of low permeability is a common problem in the industry. Epoxy resin, displaying excellent mechanical properties and adherent performance, can easily inject a tiny crack, forming a long-term blocking barrier. This study aimed to investigate an easily injectable degradable epoxy resin sealing material. The injectable performance, longterm stability, and mechanical and plugging properties were comparatively analyzed in the fractured core, and the degradable performance was discussed in the degrading solution. The result showed that the range of R (R is the ratio of EOG and MHHPA) from 1 to 1.1 and the mass fraction range of EMI from 0.01 to 4 wt % are the optimal formulations (EOGM). The curing time from 1 to 12 h could be regulated by adjusting the dosage of EMI, as well as the strength being more than 60 MPa. The plugging agent's initial viscosity is lower than 100 MPa s at 20 °C and injecting pressure is lower than 0.1 MPa. After curing for 24 h, compressive strength was more than 72.76 MPa, 3.6 times higher than that of cement, and the adhesion strength was 4.41 MPa when the contact area was 75.93 cm 3 . Breakthrough pressures for sealing 1−5 mm fractures were all more than 10 MPa, and the breakthrough pressure for 1 mm crack even reached 29.4 MPa. Epoxy resin/acid anhydride system could be degraded in a mixed solution of phenol−potassium salt−heavy aromatics within 7 days at 60−100 °C, which reduced the plugging well risk of the epoxy resin plugging agent. These results suggest that an epoxy resin/acid anhydride plugging agent can be employed effectively and safely for the injection of tiny cracks, which is of great engineering significance.