The nature and origin of the early Yanshanian granitoids, widespread in the South China Block, shed light on their geodynamic setting; however, understanding their magmatism processes remains a challenge. In this paper, we present both major and trace elements of bulk rock, Sr–Nd–Pb isotopic geochemistry, and zircon U–Pb–Hf isotopes of the low Sr and high Yb A2-type granites, which were investigated with the aim to further constrain their petrogenesis and tectonic implications. Zircon U–Pb dating indicates that these granites were emplaced at ca. 153 Ma. The granites are characterized by high SiO2 (>74 wt.%) and low Al2O3 content (11.0 wt.%–12.7 wt.%; <13.9 wt.%). They are enriched in large ion lithophile elements (LILEs) (e.g., Rb, Th, U, and K) and Yb, but depleted in high field-strength elements (HFSEs) (e.g., Nb, Ta, Zr and Hf), Sr, Ba P, Ti and Eu concentrations. They exhibit enriched rare earth elements (REEs) with pronounced negative Eu anomalies. They have εNd(t) values in a range from −6.5 to −9.3, and a corresponding TDM model age of 1.5 to 1.7 Ga. They have a (206Pb/204Pb)t value ranging from 18.523 to 18.654, a (207Pb/204Pb)t value varying from 15.762 to 15.797, and a (208Pb/204Pb)t value ranging from 39.101 to 39.272. The yield εHf(t) ranges from −6.1 to −2.1, with crustal model ages (TDMC) of 1.3 to 1.6 Ga. These features indicate that the low Sr and high Yb weakly peraluminous A2-type granites were generated by overlying partial melting caused by the upwelling of the asthenosphere in an extensional tectonic setting. The rollback of the Paleo-Pacific Plate is the most plausible combined mechanism for the petrogenesis of A2-type granites, which contributed to the Sn–W polymetallic mineralization along the Shi-Hang zone in South China.