2018
DOI: 10.1007/s42064-018-0025-x
|View full text |Cite
|
Sign up to set email alerts
|

Reachable domain for spacecraft with ellipsoidal Delta-V distribution

Abstract: Conventional reachable domain (RD) problem with an admissible velocity increment, Δv, in an isotropic distribution, was extended to the general case with Δv in an anisotropic ellipsoidal distribution. Such an extension enables RD to describe the effect of initial velocity uncertainty because a Gaussian form of velocity uncertainty can be regarded as possible velocity deviations that are confined within an error ellipsoid. To specify RD in space, the boundary surface of RD, also known as the envelope, should be… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
8
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
9
1

Relationship

0
10

Authors

Journals

citations
Cited by 21 publications
(9 citation statements)
references
References 14 publications
0
8
0
1
Order By: Relevance
“…文献 [74]采用上述模型和恢复系 数法探究了67P彗星表面质点跳跃轨迹运动规律, 发 现法向恢复系数是着陆是否成功的关键参量. Xue等 人 [85,86] 和Wen等人 [87,88] 在上述质点动力学分析方法基 础上, 参考航天器"可达域"概念, 提出了"表面跳跃可 达域"的概念和计算方法 [57] , 以陀螺形小行星101955 类型着陆器在任务应用中有待商榷. Hockman和Pavone [95] 采用Lambert边值问题轨迹拼接方式搜索弹跳 轨迹出发点处的速度初值, 并结合深度神经网络规划 最优路径.…”
Section: 探测器着陆质心运动动力学unclassified
“…文献 [74]采用上述模型和恢复系 数法探究了67P彗星表面质点跳跃轨迹运动规律, 发 现法向恢复系数是着陆是否成功的关键参量. Xue等 人 [85,86] 和Wen等人 [87,88] 在上述质点动力学分析方法基 础上, 参考航天器"可达域"概念, 提出了"表面跳跃可 达域"的概念和计算方法 [57] , 以陀螺形小行星101955 类型着陆器在任务应用中有待商榷. Hockman和Pavone [95] 采用Lambert边值问题轨迹拼接方式搜索弹跳 轨迹出发点处的速度初值, 并结合深度神经网络规划 最优路径.…”
Section: 探测器着陆质心运动动力学unclassified
“…When a spacecraft is dominated by one force and the orbital state transition matrix can be derived by the linearization hypothesis in some form as affected by an initial state uncertainty or a small orbital maneuver [26][27][28], can be approximately calculated by the state transition matrix which is…”
Section: Type Imentioning
confidence: 99%
“…The initial states entering the atmosphere of Mars are listed in Table 1 [3]. Step 2: The solution of the z-th iteration x z is chosen to be the initial profile in the (z + 1)-th iteration to solve x z+1 and u z+1 [49,50].…”
Section: Numerical Demonstrationsmentioning
confidence: 99%