In this paper, we present a theoretical study of a Surface Plasmon Resonance Sensor in the Surface Plasmon Coupled Emission (SPCE) configuration. A periodic planar array of core-shell gold nanoparticles (AuNps), chemically functionalized to aggregate fluorescent molecules, is coupled to the sensor structure. These nanoparticles, characterized as target particles, are modeled as equivalent nanodipoles. The electromagnetic modeling of the device was performed using the spectral representation of the magnetic potential by Periodic Green’s Function (PGF). Parametric results of spatial electric and magnetic fields are presented at wavelength 632.8nm. We also present a spectral analysis of the magnetic potential, where we verify the appearance of the surface plasmon polariton (SPP) waves. To validate the analytical method, we compared the limit case of small concentration of nanoparticles with published works. We also present a convergence analysis of the solution as a function of the concentration of nanoparticles in the periodic array. The results show that the theoretical method of PFG can be efficiently used as a tool for design of this sensing device.