Mycobacterium tuberculosis relies on its own ability to biosynthesize coenzyme A to meet the
needs of the myriad enzymatic reactions that depend on this cofactor
for activity. As such, the essential pantothenate and coenzyme A biosynthesis
pathways have attracted attention as targets for tuberculosis drug
development. To identify the optimal step for coenzyme A pathway disruption
in M. tuberculosis, we constructed
and characterized a panel of conditional knockdown mutants in coenzyme
A pathway genes. Here, we report that silencing of coaBC was bactericidal in vitro, whereas silencing of panB, panC, or coaE was bacteriostatic
over the same time course. Silencing of coaBC was
likewise bactericidal in vivo, whether initiated at infection or during
either the acute or chronic stages of infection, confirming that CoaBC
is required for M. tuberculosis to grow and persist in mice and arguing against significant CoaBC
bypass via transport and assimilation of host-derived pantetheine
in this animal model. These results provide convincing genetic validation
of CoaBC as a new bactericidal drug target.