The concepts of excited-state
aromaticity and antiaromaticity have
in recent years with increasing frequency been invoked to rationalize
the photochemistry of cyclic conjugated organic compounds, with the
long-term goal of using these concepts to improve the reactivities
of such compounds toward different photochemical transformations.
In this regard, it is of particular interest to assess how the presence
of a benzene motif affects photochemical reactivity, as benzene is
well-known to completely change its aromatic character in its lowest
excited states. Here, we investigate how a benzene motif influences
the photoinduced electrocyclization of dithienylethenes, a major class
of molecular switches. Specifically, we report on the synthesis of
a dithienylbenzene switch where the typical nonaromatic, ethene-like
motif bridging the two thienyl units is replaced by a benzene motif,
and show that this compound undergoes electrocyclization upon irradiation
with UV-light. Furthermore, through a detailed quantum chemical analysis,
we demonstrate that the electrocyclization is driven jointly and synergistically
by the loss of aromaticity in this motif from the formation of a reactive,
antiaromatic excited state during the initial photoexcitation, and
by the subsequent relief of this antiaromaticity as the reaction progresses
from the Franck–Condon region. Overall, we conclude that photoinduced
changes in aromaticity facilitate the electrocyclization of dithienylbenzene
switches.