Substituents on cyclopentadienyl ligands significantly influence the reactivity and catalytic efficiency of their transition metal complexes. Therefore, development of synthetic methods for cyclopentadiene derivatives possessing different substituents has been in great demand. In this paper, we report new synthetic methods for multiply substituted cyclopentadienes recently developed in this group. In principle, three types of preparative methods are described. Firstly, zirconacyclopentadienes in the presence of Lewis acids react with aldehydes to afford multiply substituted cyclopentadienes, thus providing a one-pot procedure from two molecules of identical or different alkynes and one molecule of aldehyde; reaction of aluminacyclopentadienes with aldehydes also result in high-yield formation of multiply substituted cyclopentadienes. Secondly, 1,2,3,4-tetrasubstituted 1,4-dilithio-and 1,4-bis(magnesiobromo)-1,3-diene derivatives react with aldehydes or ketones via deoxygenation of the C@O moieties to afford cyclopentadiene derivatives. Thirdly, monolithio reagents, 1,2,3,4-tetrasubstituted 1-lithio-1,3-butadienes, and Grignard reagents, 1,2,3,4-tetrasubstituted 1-magnesiobromo-1,3-butadienes react with aldehydes or ketones to afford cyclopentadiene derivatives upon hydrolysis.