The direct construction of bioisosteric compounds enriched in C sp3 content represents an attractive and dependable approach to imbuing biologically active molecules with enhanced three-dimensional characteristics, finding wide utility across the synthetic and medicinal chemistry community. Despite recent advancements in the synthesis of (aza)-bicyclo[3.1.1]heptanes (BCHeps and aza-BCHeps), which serve as meta-substituted (aza)arene bioisosteres, the enantioselective assembly of chiral 3-aza-BCHeps remains a coveted goal yet to be achieved. Here, we disclose an unprecedented copper-catalyzed asymmetric formal [4π+2σ] cycloaddition of bicyclo[1.1.0]butanes (BCBs) and azomethine ylides, furnishing a diverse array of enantioenriched 3-aza-BCHeps with exceptional levels of diastereo-and enantioselectivites (51 examples, all >20:1 dr, mostly 97−99% ee). Both mono-and disubstituted BCBs are well compatible with this protocol, offering an enticing route for the efficient synthesis of challenging tetrasubstituted bicyclic products bearing two quaternary centers. The synthetic significance of this methodology is further demonstrated by the successful preparation of several piperidine drug analogues.