The use of privileged scaffolds has proven beneficial for generating novel bioactive scaffolds in drug discovery program. Chromone is one such privileged scaffold that has been exploited for designing pharmacologically active analogs. The molecular hybridization technique combines the pharmacophoric features of two or more bioactive compounds to avail a better pharmacological activity in the resultant hybrid analogs. The current review summarizes the rationale and techniques involved in developing hybrid analogs of chromone, which show potential in fields of obesity, diabetes, cancer, Alzheimer's disease and microbial infections. Here the molecular hybrids of chromone with various pharmacologically active analogs or fragments (donepezil, tacrine, pyrimidines, azoles, furanchalcones, hydrazones, quinolines, etc.) are discussed with their structure‐activity relationship against above‐mentioned diseases. Detailed methodologies for the synthesis of corresponding hybrid analogs have also been described, with suitable synthetic schemes. The current review will shed light on various strategies utilized for the design of hybrid analogs in the field of drug discovery. The importance of hybrid analogs in various disease conditions is also illustrated.