Using a multistep synthetic pathway, a bis(imino)pyridine (or pyridine diimine, PDI) molybdenum catalyst for the selective conversion of carbon dioxide into methanol has been developed. Starting from ((Ph2PPr)PDI)Mo(CO), I2 addition afforded [((Ph2PPr)PDI)MoI(CO)][I], which features a seven-coordinate Mo(II) center. Heating this complex to 100 °C under vacuum resulted in CO loss and the formation of [((Ph2PPr)PDI)MoI][I]. Reduction of [((Ph2PPr)PDI)MoI][I] in the presence of excess K/Hg yielded (κ(6)-P,N,N,N,C,P-(Ph2PPr)PDI)MoH following methylene group C-H activation at the α-position of one PDI imine substituent. The addition of CO2 to (κ(6)-P,N,N,N,C,P-(Ph2PPr)PDI)MoH resulted in facile insertion to generate the respective η(1)-formate complex, (κ(6)-P,N,N,N,C,P-(Ph2PPr)PDI)Mo(OCOH). When low pressures of CO2 were added to solutions of (κ(6)-P,N,N,N,C,P-(Ph2PPr)PDI)MoH containing pinacolborane, the selective formation of H3COBPin and O(BPin)2 was observed along with precatalyst regeneration. When HBPin was limited, H2C(OBPin)2 was observed as an intermediate and (κ(6)-P,N,N,N,C,P-(Ph2PPr)PDI)Mo(OCOH) remained present throughout CO2 reduction. The hydroboration of CO2 to H3COBPin was optimized and 97% HBPin utilization by 0.1 mol % (κ(6)-P,N,N,N,C,P-(Ph2PPr)PDI)MoH was demonstrated over 8 h at 90 °C, resulting in a methoxide formation turnover frequency (TOF) of 40.4 h(-1) (B-H utilization TOF = 121.2 h(-1)). Hydrolysis of the products and distillation at 65 °C allowed for MeOH isolation. The mechanism of (κ(6)-P,N,N,N,C,P-(Ph2PPr)PDI)MoH mediated CO2 hydroboration is presented in the context of these experimental observations. Notably, (κ(6)-P,N,N,N,C,P-(Ph2PPr)PDI)MoH is the first Mo hydroboration catalyst capable of converting CO2 to MeOH, and the importance of this study as it relates to previously described catalysts is discussed.