Inulin, a plant polysaccharide consisting of mainly D-fructose units, is considered an interesting feed for 5-hydroxymethylfurfural (HMF), a top 12 bio-based chemical. We here report an exploratory experimental study on the use of a wide range of homogeneous metal salts as catalysts for the conversion of inulin to HMF in water. Best results were obtained using CuCl2. Activity-pH relations indicate that the catalyst activity of CuCl2 is likely related to Lewis acidity and not to Brönsted acidity. The effects of process conditions on HMF yield for CuCl2 were systematically investigated and quantified using a central composite design (160-180 °C, an inulin loading between 0.05 and 0.15 g/mL, CuCl2 concentration in range of 0.005-0.015 M, and a reaction time between 10 and 120 min). The highest experimental HMF yield in the process window was 30.3 wt. % (39 mol %, 180 °C, 0.05 g/mL inulin, 0.005 M CuCl2 and a reaction time of 10 min). The HMF yields were modelled using non-linear, multi variable regression and good agreement between experimental data and model were obtained.