Current approaches combining multiple static analyses deriving different, independent properties focus either on modularity or performance. Whereas declarative approaches facilitate modularity and automated, analysis-independent optimizations, imperative approaches foster manual, analysis-specific optimizations. In this paper, we present a novel approach to static analyses that leverages the modularity of blackboard systems and combines declarative and imperative techniques. Our approach allows exchangeability, and pluggable extension of analyses in order to improve sound(i)ness, precision, and scalability and explicitly enables the combination of otherwise incompatible analyses. With our approach integrated in the OPAL framework, we were able to implement various dissimilar analyses, including a points-to analysis that outperforms an equivalent analysis from Doop, the state-of-the-art points-to analysis framework. CCS CONCEPTS • Software and its engineering → Abstraction, modeling and modularity; Automated static analysis; • Theory of computation → Program analysis; Parallel computing models.