Global warming has become a source of awareness regarding the potential deleterious effects of extreme abiotic factors (e.g., temperature, dissolved oxygen (DO) levels) and also their influence on chemicals toxicity. In this work, we studied the combined effects of nickel and temperature (low and high levels) and nickel and low levels of DO to Daphnia magna, and concentration addition and independent action concepts as well as their deviations for synergism/antagonism, dose ratio and dose level dependency, were applied to survival and feeding rate data. Nickel single exposure showed an LC(50) value for 48 h of 7.36 mg l(-1) and an EC(50) value for feeding impairment at 2.41 mg l(-1). In the acute exposures to high and low temperatures, 50% of mortality was observed, respectively, at 30.7 degrees C and 4.2 degrees C whereas 50% reduction on the feeding activity was recorded at 22.6 degrees C and 16.0 degrees C. Relatively to low DO levels, a LC(50) value for 48 h of 0.5 mg l(-1) was obtained; feeding activity EC(50) value was 2 mg l(-1). On acute combined experiments, antagonism was observed for the combination of nickel and extreme temperatures, whereas a synergistic behaviour was observed in the combined exposure of nickel and low DO levels. At sublethal levels, nickel showed to be the main inducer of toxicity at high and low temperatures but not at low levels of dissolved oxygen. Toxicokinetics and toxicodynamics modelling studies should be made in the future to understand the toxicological pathways involved on complex combinations of stressors and to validate any conclusions.