Tiam1 is a ubiquitously expressed activator of the small GTPase Rac. Previously, we found that Tiam1 knockout (KO) mice are resistant to DMBA-induced skin tumorigenicity, which correlated with increased apoptosis in keratinocytes of the skin epidermis. Here, we have studied the mechanisms by which Tiam1 protects against apoptosis. We found that Tiam1-KO keratinocytes show increased apoptosis in response to apoptotic stimuli, including growth factor deprivation and heat-shock treatment. Expression of catalytically active Tiam1, but not inactive Tiam1, rescues the apoptosis susceptibility of Tiam1-KO keratinocytes, indicating that this defect is caused by impaired Tiam1-mediated Rac activation. Apoptosis induced by growth factor starvation correlates with impaired ERK phosphorylation in Tiam1-KO keratinocytes. Moreover, Tiam1-KO keratinocytes contain lower levels of intracellular reactive oxygen species (ROS) when compared with wild-type cells. The ROS content of keratinocytes is dependent on both Tiam1 and the activity of NADPH oxidase (Nox), and is required for ERKmediated survival signaling. Indeed, Tiam1 deficiency or the inhibition of intracellular ROS production blocks ERK phosphorylation and sensitizes wild-type keratinocytes to apoptotic stimuli. Our results indicate that the Rac activator Tiam1 controls the intracellular redox balance by Nox-mediated ROS production, which regulates ERK phosphorylation and the susceptibility of keratinocytes to apoptotic signaling.