The study of the chemical and biological properties of CeO2 NPs (CNPs) has expanded recently due to its therapeutic potential, and the methods used to synthesize these materials are diverse. Moreover, conflicting reports exists regarding the toxicity of CNP. To help resolve these discrepancies, we must first determine whether CeO2 NPs made by different methods are similar or different in their physiochemical and catalytic properties. In this paper, we have synthesized several forms of CNPs using identical precursors through a wet chemical process but using different oxidizer/reducer H2O2 (CNP1), NH4OH (CNP2) or hexamethylenetetramine (HMT-CNP1). Physiochemical properties of these CeO2 NPs were extensively studied and found to be different depending on the preparation methods. Unlike CNP1 and CNP2, HMT-CNP1 were readily taken into endothelial cells and their aggregation can be visualized using light microscopy. Exposure to HMT-CNP1 also reduced cell viability (MTT) at a 10-fold lower concentration than CNP1 or CNP2. Surprisingly, exposure to HMT-CNP1 led to substantial decreases in the ATP levels. Mechanistic studies revealed that HMT-CNP1 exhibited substantial ATPase (phosphatase) activity. Though CNP2 also exhibits ATPase activity, CNP1 lacked ATPase activity. The difference in catalytic (ATPase) activity of different CeO2 NPs preparation may be due to differences in their morphology and oxygen extraction energy. These results suggest the combination of increased uptake and ATPase activity of HMT-CNP1 may underlie the biomechanism of the toxicity of this preparation of CNPs, and may suggest ATPase activity should be considered when synthesizing CNPs for use in biomedical applications.