This research evaluated previously published trihalomethane (THM) formation models for their statistical robustness to be applied outside of their original calibration data set, and be used as a predictive tool at the water utility scale. All models predicted THM4 (i.e., the sum of the four chlorine-and bromine-containing THM species) based on the chlorination of natural waters and were developed using different combinations of precursor types (i.e., organic carbon concentration, UV-absorbing substances, and bromide concentration) and chlorination conditions (i.e., chlorine dose, pH, temperature, and time) as explanatory variables. All models were log (base 10) transformed into a common format, and were evaluated using a nationally representative water quality and THM4 formation data set based on the statistical metrics standard error, mean absolute percentage error, R 2 , and adjusted R 2 . The most robust log10(THM4) formation models had standard error equal to 0.226-0.262 and adjusted R 2 equal to 0.696-0.783. The THM4 formation models that included bromide as an explanatory variable tended to under predict THM4 formation as a function of increasing bromide concentration. Overall, the results of this research show that several previously published THM4 formation models were developed with the appropriate explanatory variables and calibrated with a sufficiently broad data set such that the models may give a reasonable prediction of THM4 formation, depending on the level of accuracy desired, for chlorinated water conditions separate from the original