The compound 1-(2,2,3,3,-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol, also called Cs-7SB, is used as a solvent modifier in formulations containing calixarenes and crown ethers for cesium and strontium extraction from nuclear waste solutions. The compound solvates complexes of both metals and decreases in its concentration result in lowered extraction efficiency for both. The use of Cs-7SB in nuclear-solvent extraction ensures that it will be exposed to high-radiation doses, and thus its radiation-chemical robustness is a matter of interest in the design of extraction systems employing it. The behavior of the compound in irradiated solution, both in the presence and absence of a nitric acid aqueous phase was investigated here using steady state-and pulsed-radiolysis techniques. The rate constants for the aqueous reactions of Cs-7SB with • H, • OH, • NO 3 , and • NO 2 radicals are reported. UPLC-UV-MS results were used to identify major products of the radiolysis of Cs-7SB in contact with nitric acid, and revealed the production of hydroxylated nitro-derivatives. Reaction mechanisms are proposed and it was concluded that the aryl-ether configuration of this molecule makes it especially susceptible to nitration in the presence of radiolytically-produced nitrous acid. Fluoride yields are also given under various conditions.