This chapter is divided into three main parts: (1) governing processes in multiphase multicomponent flow and reactive transport (MMF&RT), (2) mathematical and numerical approaches of MMF&RT modeling, and (3) applications with respect to CO 2 storage. Thereafter, discussion of other applications that illustrate the ability of existing methods to represent general non-ideal multicomponent gaseous systems within a wide range of temperature and pressure conditions, in addition to their possible interactions with water/brine/rock, are presented. GOVERNING PROCESSES The governing processes and present issues of multiphase flow and geochemical modeling are introduced in this section. The definition of wettability is first presented, which is difficult for several systems; followed by the definitions of capillary pressure, residual and capillary trapping, and heterogeneity. In addition, the relative permeability is introduced, which is a characteristic property of multiphase flow. Recently, novel experimental and numerical technologies have provided further insight into different concepts such as residual nonwetting saturation, maximum relative permeability, governing forces, hysteresis, the impact of heterogeneity, and upscaling from pore-and core-scales. The different regimes of gas diffusion are then discussed in conjunction with corresponding modeling methods. Thereafter, basic formulations of multiphase flow are presented, from immiscible to compositional flows.