The use of sensors in different applications to improve the monitoring of a process and its variables is required as it enables information to be obtained directly from the process by ensuring its quality. This is now possible because of the advances in the fabrication of sensors and the development of equipment with a high processing capability. These elements enable the development of portable smart systems that can be used directly in the monitoring of the process and the testing of variables, which, in some cases, must evaluated by laboratory tests to ensure high-accuracy measurement results. One of these processes is taste recognition and, in general, the classification of liquids, where electronic tongues have presented some advantages compared with traditional monitoring because of the time reduction for the analysis, the possibility of online monitoring, and the use of strategies of artificial intelligence for the analysis of the data. However, although some methods and strategies have been developed, it is necessary to continue in the development of strategies that enable the results in the analysis of the data from electrochemical sensors to be improved. In this way, this paper explores the application of an electronic tongue system in the classification of liquor beverages, which was directly applied to an alcoholic beverage found in specific regions of Colombia. The system considers the use of eight commercial sensors and a data acquisition system with a machine-learning-based methodology developed for this aim. Results show the advantages of the system and its accuracy in the analysis and classification of this kind of alcoholic beverage.