Diffusion magnetic resonance imaging and tractography enable the estimation of anatomical connectivity in the human brain, in vivo. Yet, without ground-truth validation, different tractography algorithms can yield widely varying connectivity estimates. Although streamline pruning techniques mitigate this challenge, slow compute times preclude their use in big-data applications. We present ‘Regularized, Accelerated, Linear Fascicle Evaluation’ (ReAl-LiFE), a GPU-based implementation of a state-of-the-art streamline pruning algorithm (LiFE), which achieves >100× speedups over previous CPU-based implementations. Leveraging these speedups, we overcome key limitations with LiFE’s algorithm to generate sparser and more accurate connectomes. We showcase ReAl-LiFE’s ability to estimate connections with superlative test–retest reliability, while outperforming competing approaches. Moreover, we predicted inter-individual variations in multiple cognitive scores with ReAl-LiFE connectome features. We propose ReAl-LiFE as a timely tool, surpassing the state of the art, for accurate discovery of individualized brain connectomes at scale. Finally, our GPU-accelerated implementation of a popular non-negative least-squares optimization algorithm is widely applicable to many real-world problems.