Η ερευνητική μας δραστηριότητα αφορά φαινόμενα καθολικότητας. Αναφερόμαστε σε φαινόμενα όπου μια συλλογή αντικειμένων που σχετίζεται με ένα στοιχείο πραγματοποιεί προσεγγίσεις. Συγκεκριμένα, αν έχουμε μια ακολουθία τελεστών (T_n) μεταξύ δύο μετρικών χώρων X και Y, ένα στοιχείο x του X λέγεται καθολικό αν κάθε στοιχείο του Y μπορεί να προσεγγιστεί από κάποια υπακολουθία της (T_n x). Ας θεωρήσουμε X:=H(Ω) τον χώρο των ολόμορφων συναρτήσεων σε απλά συνεκτικό χωρίο Ω του μιγαδικού επιπέδου (με την τοπολογία της ομοιόμορφης σύγκλισης στα συμπαγή). Τότε μελετάμε κλάσεις ολόμορφων συναρτήσεων για τις οποίες τα ζεύγη (S_n(f), S_{λ_n}(f)) πραγματοποιούν προσεγγίσεις (όπου S_n(f) η ακολουθία των μερικών αθροισμάτων του αναπτύγματος Taylor της f, γύρω από κάποιο στοιχείο ζ του Ω και (λ_n) μια γνησίως αύξουσα ακολουθία φυσικών αριθμών). Οι συναρτήσεις αυτές αποτελούν καθολικά στοιχεία για συγκεκριμένη ακολουθία τελεστών. Έπειτα, δουλεύουμε στον χώρο των πραγματικών, άπειρες φορές παραγωγίσιμων συναρτήσεων και θεωρούμε τον γραμμικό τελεστή Taylor (backward) shift με κέντρο το 0 που ορίζεται ως εξής: T(f)(x):=[f(x)-f(0)]/x, για x διάφορο του μηδενός και T(f)(0):=f'(0). Παρουσιάζουμε μια έννοια πολλαπλής καθολικότητας για μια πεπερασμένη συλλογή από υπακολουθίες της τροχιάς του Taylor shift τελεστή. Τέλος, αποδεικνύουμε ότι η κλάση αυτών των καθολικών στοιχείων έχει μια ιδιότητα παρεμβολής: δοσμένης ακολουθίας πραγματικών αριθμών, χωρίς σημείο συσσώρευσης, υπάρχει συνάρτηση σε αυτή τη κλάση, με προκαθορισμένες τιμές στα σημεία της ακολουθίας.