Abstract. We demonstrate the use of task-based image-quality metrics to compare various photoacoustic imagereconstruction algorithms, including a method based on the pseudoinverse of the system matrix, simple backprojection, filtered backprojection, and a method based on the Fourier transform. We use a three-dimensional forward model with a linear transducer array to simulate a photoacoustic imaging system. The reconstructed images correspond with two-dimensional slices of the object and are 128 × 128 pixels. In order to compare the algorithms, we use channelized Hotelling observers that predict the detection ability of human observers. We use two sets of channels: constant Q and difference of Gaussian spatial frequency channels. We look at three tasks, identification of a point source in a uniform background, identification of a 0.5-mm cube in a uniform background, and identification of a point source in a lumpy background. For the lumpy background task, which is the most realistic of the tasks, the method based on the pseudoinverse performs best according to both sets of channels. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.