We report on a monitoring system based on a high-speed camera for fiber laser fusion cutting. The monitoring system is used without an external illumination retrofit on a conventional cutting head, with the optical path aligned coaxially to the incident laser, permitting a direct, spatially, and temporally resolved detection of the melt pool area in the cut kerf from the top view. The dependence of the melt pool area on laser processing parameters such as laser power and feed rate are thus evaluated for stainless steel, zinc-coated steel, and aluminum, respectively. The signal characteristics of the images captured from the melt pool are examined in the visible spectral range of the emitted secondary thermal radiation from the process zone. An ad hoc developed image processing algorithm analyzes the spectral and geometric information of the melt pool from high-speed camera images and distinguishes between complete and incomplete cuts.