fax 01-972-952-9435.
AbstractDownhole fluid analysis (DFA) has emerged as a key technique for characterizing the distribution of reservoir fluid properties and determining zonal connectivity across the reservoir. Information from profiling the reservoir fluids enables sealing barriers to be proven and compositional grading to be quantified; this information cannot be obtained from conventional wireline logs. The DFA technique has been based largely on optical spectroscopy, which can provide estimates of filtrate contamination, gas/oil ratio (GOR), pH of formation water, and a hydrocarbon composition in four groups: methane (C1), ethane to pentane (C2-5), hexane and heavier hydrocarbons (C6+), and carbon dioxide (CO 2 ). For single-phase assurance it is possible to detect gas liberation (bubble point) or liquid dropout (dew point) while pumping reservoir fluid to the wellbore, before filling a sample bottle.In this paper, a new DFA tool is introduced which greatly increases the accuracy of these measurements. The tool uses a grating spectrometer in combination with a filter-array spectrometer. The range of compositional information is extended from four groups to five groups: methane (C1), ethane (C2), propane to pentane (C3-5), C6+, and CO 2 . These spectrometers, together with improved compositional algorithms, now make possible a quantitative analysis of reservoir fluid with much greater accuracy and repeatability. This accuracy enables comparison of fluid properties between wells for the first time, thus extending the application of fluid profiling from a single well to multi-well. Field-based fluid characterization is now possible.In addition a new measurement is introduced -in-situ density of reservoir fluid. Measuring this property downhole at reservoir conditions of pressure and temperature provides important advantages over surface measurements. The density sensor is combined in a package that includes the optical spectrometers, fluid resistivity, pressure, temperature, and fluorescence measurements that all play a vital role in determining the exact nature of the reservoir fluid.Extensive tests at a pressure/volume/temperature (PVT) laboratory are presented to illustrate sensor response in a large number of live fluid samples. These tests of known fluid compositions were conducted under pressurized and heated conditions to emulate reservoir conditions. In addition several field examples are presented to illustrate applicability in different environments.