The turning process is a widely used machining process, and its productivity has a significant impact on the cost and profit in industrial enterprises. Currently, it is difficult to effectively determine the optimum process parameters under complex conditions. To address this issue, a classification-based parameter optimization approach of the turning process is proposed in this paper, which aims to provide feasible optimization suggestions of process parameters and consists of a classification model and several optimization strategies. Specifically, the classification model is used to separate the whole complex process into different substages to reduce difficulties of the further optimization, and it achieves high accuracy and strong anti-interference in the identification of substages by integrating the advantages of an encoder-decoder framework, attention mechanism, and major voting. Additionally, during the optimization process of each substage, Dynamic Time Warping (DTW) and K-Nearest Neighbor (KNN) are utilized to eliminate the negative impact of cutting tool wear status on optimization results at first. Then, the envelope curve strategy and boxplot method succeed in the adaptive calculation of a parameter threshold and the detection of optimizable items. According to these optimization strategies, the proposed approach performs well in the provision of effective optimization suggestions. Ultimately, the proposed approach is verified by a bearing production line. Experimental results demonstrate that the proposed approach achieves a significant productivity improvement of 23.43% in the studied production line.