Featured Application: This research aims to reduce the energy loss through the relief valve, especially in the systems where the system pressure is high or the overflow flow rate is large.Abstract: Relief valves are widely used in industrial machinery. Due to the outlet of the relief valve being connected to the tank, the pressure drop of the relief valve is frequently equal to the inlet pressure. Accordingly, the energy loss of the relief valve is very high in some cases and this will worsen with an increase in the rated pressure of the hydraulic system. In order to overcome the disadvantage of overflow energy loss in a relief valve, a hydraulic energy regeneration unit (HERU) is connected to the outlet of the relief valve to decrease the pressure drop between the inlet and outlet of the relief valve. The overflow loss, which is characterized by the pressure drop, can be reduced accordingly. The approach is to convert the overflow energy loss in hydraulic form and allow for release when needed. The configuration and working principle of the relief valve with HERU is introduced in this present study. The mathematical model is established to obtain the factors influencing the stability of the relief valve. The working pressure of the hydraulic accumulator (HA) is explored. Furthermore, the control process of the operating state of the HA is scheduled to decide whether to regenerate the energy via the HERU. The software AMESim is utilized to analyze the performance and characteristics of the relief valve with HERU. Following this, the test rig is built and used to verify the effectiveness of the proposed relief valve with HERU. The experimental results show that the relief valve with the HERU connected to its outlet can still achieve better pressure-regulating characteristics. The energy regeneration efficiency saved by the HA is up to 83.6%, with a higher pre-charge pressure of the HA. This indicates that the proposed structure of the relief valve with HERU can achieve a better performance and higher regeneration efficiency.