To understand the severity of infection for a given disease, it is common epidemiological practice to estimate the case fatality risk, defined as the risk of death among cases. However, there are three technical obstacles that should be addressed to appropriately measure this risk. First, division of the cumulative number of deaths by that of cases tends to underestimate the actual risk because deaths that will occur have not yet observed, and so the delay in time from illness onset to death must be addressed. Second, the observed dataset of reported cases represents only a proportion of all infected individuals and there can be a substantial number of asymptomatic and mildly infected individuals who are never diagnosed. Third, ascertainment bias and risk of death among all those infected would be smaller when estimated using shorter virus detection windows and less sensitive diagnostic laboratory tests. In the ongoing COVID-19 epidemic, health authorities must cope with the uncertainty in the risk of death from COVID-19, and high-risk individuals should be identified using approaches that can address the abovementioned three problems. Although COVID-19 involves mostly mild infections among the majority of the general population, the risk of death among young adults is higher than that of seasonal influenza, and elderly with underlying comorbidities require additional care.