Real-Time Ferrogram Segmentation of Wear Debris Using Multi-Level Feature Reused Unet
Jie You,
Shibo Fan,
Qinghai Yu
et al.
Abstract:The real-time monitoring and fault diagnosis of modern machinery and equipment impose higher demands on equipment maintenance, with the extraction of morphological characteristics of wear debris in lubricating oil emerging as a critical approach for real-time monitoring of wear, holding significant importance in the field. The online visual ferrograph (OLVF) technique serves as a representative method in this study. Various semantic segmentation approaches, such as DeepLabV3+, PSPNet, Segformer, Unet, and othe… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.