Real-time gastric intestinal metaplasia semantic segmentation with multiple abnormalities using deep learning approach
Passin Pornvoraphat
Abstract:This thesis declares the segmentation of gastric intestinal metaplasia (GIM) in real-time. Recently, GIM segmentation of endoscopic images has been conducted to distinguish GIM from a healthy stomach. However, achieving real-time detection is difficult. Challenging conditions include multiple color modes (white light endoscopy and narrow-band imaging), other abnormal lesions (erosion and ulcer), noisy labels, etc. Herein, our model is based on BiSeNet and can overcome the many issues regarding GIM. Applying au… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.