Real-time gypsum quality estimation in an industrial calciner: A neural network-based approach
M. Jacobs,
R-D. Taylor,
F.H. Conradie
et al.
Abstract:Total bound moisture (TBM) is a typical quality indicator of industrial-grade gypsum. This gypsum is comprised of three distinct phases, namely anhydrite, dihydrate, and hemihydrate, of which only the latter is of much industrial use. TBM analysis is a lengthy laboratory procedure, and an artificial neural network (ANN) TBM inference measurement is proposed as a fast and online alternative. An ANN inference model for gypsum TBM based on plant data was developed. The inputs to the network were primarily focused… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.