Winding short circuit faults are recognized as one of most frequent electric machine failure modes. Effective on-line diagnosis of these is vital, but remains a challenging task, in particular, at incipient fault stage. This paper reports a novel technique for on-line detection of incipient stator short circuit faults in random wound electrical machines based on in situ monitoring of windings thermal signature using electrically nonconductive and electromagnetic interference immune fiber-Bragg grating (FBG) temperature sensors. The presented method employs distributed thermal monitoring, based on the FBG multiplexing feature, in a variety of points within windings, in proximity to thermal hot spots of interest that arise from fault. The ability of the proposed method to enable fault diagnosis through identification of fault-induced localized thermal excitation is validated in steady-state and transient operating conditions on a purpose built inverter driven induction machine test facility. The results demonstrate the capability of unambiguous detection of inter-turn faults, including a single shorted turn. Furthermore, the winding thermal and electrical characteristics at the onset of inter-turn fault are examined and correlated, enabling better understanding of fault diagnostic requirements. Index Terms-Fiber-Bragg grating (FBG) sensor, insitu thermal monitoring, inter-turn fault detection, inverter driven induction motor.