2021
DOI: 10.1042/bcj20210434
|View full text |Cite
|
Sign up to set email alerts
|

Real-time kinetic studies of Mycobacterium tuberculosis LexA-DNA interaction

Abstract: Transcriptional repressor, LexA, regulates the “SOS” response, an indispensable bacterial DNA damage repair machinery.  Compared to its E.coli ortholog, LexA from Mycobacterium tuberculosis (Mtb) possesses a unique N-terminal extension of additional 24 amino acids in its DNA binding domain (DBD) and 18 amino acids insertion at its hinge region that connects the DBD to the C-terminal dimerization/autoproteolysis domain. Despite the importance of LexA in “SOS” regulation, Mtb LexA remains poorly characterized an… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?